BREAKAWAY OF A BUBBLE FROM A HEATING SURFACE
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In this paper we solve the problem of determining the breakaway.
diameter of the vapor bubble in the case of a large number of active
vapor-forming centers, The motion of the liquid is discussed, The
dynamic pressure of the liquid surrounding the vapor bubble and the
radius of the bubble on breakaway from the heating surface are de-
termined,

Pressure increase during the nucleate boiling of a
liquid leads to a rapid increase in the number of ac-
tive vapor-forming centers. The rate of change of the
number of centers greatly exceeds the rate of reduc-
tion of the bubble breakaway diameter given by the

Fritz formula
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In view of this the average area of the cell occupied
by one vapor-forming center is reduced so much that
the dimensions of this cell become less than the break-
away diameter given by formula (1). This does not
lead to fusion of the bubbles growing on the heating
surface, however, and there is a much greater re-
duction of the breakaway diameter Dy than formula
(1) indicates. This fact was noted in [1]. This effect
can be explained if it is assumed that the individual
growing vapor bubbles affect one another.

The aim of the present investigation was to deter-
mine the breakaway diameter of the bubble when there
are a large number of vapor~forming centers. This
means that in the determination of the breakaway dia-
meter we must take into account the size of the cell
occupied by one center. For the solution of this prob-
lem we consider both the static and dynamic pressure
of the liquid on the bubble surface as forces acting
on the bubble upon breakaway from the heating surface.
The dynamic pressure of the liquid displaced by the
bubble during its growth can be determined from the
equations of liquid motion. Thus, to solve the problem
we have to solve the system of motion equations with
account for the continuity equation for the liquid flow-
ing around the vapor bubble.

To simplify the problem we make several assump-
tions.

1. We assume that there are two schemes of bubble
formation on the heating surface: a) growth and break-
away of all the bubbles occur simultaneously (F = 1/n);
b) neighboring centers act at different times (in the
case of square cells). In the latter case the cross-
sectional area of the cell in which the bubble grows
is doubled (F = 2/n) owing to the neighboring "non-
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active "vapor-forming centers. This (the action of cen-"."
ters at different times) has been observed experimen-
tally [2].

2. We neglect friction forces in the liquid and re-
gard the liquid flow as potential. This simplification
has no significant effect on the dynamics of the liquid
close to the bubble, since friction forces are very
insignificant in the flow of a liquid round a bubble.

3. We assume that the bubble remains spherical
during its growth (until breakaway).

4, In the solution of the problem we assume the
cell to be of circular section and neglect the circular
velocities of the liquid (and their derivatives).

5. To simplify the problem we take the contact
angle ®; to be 90° (see the figure), which allows us
to neglect the velocity of the bubble center.

In light of the adopted assumptions the continuity
equation of the liquid for one cell can be written as
follows (in spherical coordinates):

d (Rzai)+_l__a_("‘f’ sing) =0 (2

R\ R/ sin® 98 \ 00
with the boundary conditions
V=1 for R=R,, (3)
1g=0 for O =8, (4)

Diagram of motion of liquid displaced by
growing bubble: 1) liquid flow lines; 2)
boundary of cell; 3) arbitrary boundary
of cell for adopted boundary condition (6).



Upsin® +vgcos@ =0 for Rsin® =R, (5)

The general solution of Eq. (2) is a series in which

the coefficients are determined from the boundary con-

ditions [3]. Despite the adopted assumptions and sim-
plifications, however, this solution is very complex.

The main difficulty is the need to satisfy boundary con-

dition (5). The solution of Eq. (2) can be greatly sim-
plified if condition (5) is only partially satisfied (for
instance, with ® = ®) = 90°), In this case

vp=0 for R=R, and 8 = 90". (6)

The solution of Eq. (2) takes the form
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Condition (6) definitely introduces additional error
into the general solution, particularly when R > Ry.
We are interested, however, in the dynamic pressure
on the bubble surface, i.e., at R = Rjy. In this case
the error is greatly reduced.

Knowing the velocity potential ¢ we can determine
the projections of the liquid velocities in an individual

cell,
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The rate of growth of the bubble on the heating sur-
face can be determined from the formula

oo Ry _g WAL 10
dt ro" Ry

which is derived from the condition for supply of heat
from the heating surface to the base of the bubble [4]
(Bx = 6).

To determine the pressure at the surface of the
vapor bubble we use the equations of motion of anideal
liquid. Integrating these equations and taking into ac-
count that for an ideal liquid
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and using (10}, we obtain the expression
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where C is the constant of integration.

Near the surface of the growing bubble, at R = Ry,
Eg. (11), in view of (8) and (9), takes the form
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The constant of integration can be obtained from
the condition
Pa =03, for O =08;=90"
In this case
3
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Substituting (13) into (12) we obtain the distribution
of dynamic pressure of the liquid on the bubble surface
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If the distribution of liquid static pressure over the
bubble surface is written in a similar way we obtain
the expression

Do = Pes + Y Ry COs 0. (15)

According to the adopted notation (see Fig. 1), the
angle ® lies in the range ®; < ® < 7. When ®; = 90°
the angle ® lies between n/2 and 7 and, accordingly,
0>cos ®>—1, i.e., cos @ is negative in the whole
range of variation of angle ©.

Thus, as Eq. (15) shows, with increase in the angle
® the static pressure of the liquid decreases. A sim-
ilar situation (reduction in dynamic pressure of liquid
with increase in angle @) is revealed by Eq. (14).
Hence, during the growth of the bubble on the heating
surface the dynamic pressure has the same effect on
the bubble as the static pressure, i.e., it makes the
bubble break away from the heating surface.

The pressure of the liquid on the bubble surface is
balanced by the vapor pressure inside the bubble. The
nonuniform distribution of pressure over the bubble
surface is compensated for by surface-tension forces.
The condition for equality of pressures with the sur-
face tension taken into account is written in the form

p”—p:c(—l—,—}-—l—r) , (16)

where Rl and R;‘ are the main radii of curvature of
the phase interface at the given point.

To determine the breakaway force P; acting on the
bubble owing to the nonuniform pressure we take the
integral of the pressure over the bubble surface

T
23 :5‘Ap2nR?cos®sin®d@. (17)
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Here Ap is the total liquid pressure drop (static and
dynamic) over the bubble surface with allowance for



the static vapor pressure inside the bubble:
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Substituting (18) into (17) and integrating (with ® =
=90°), we obtain
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The breakaway force acting on the bubble is bal-
anced by the surface-tension force, which holds the
bubble on the heating surface. This force is given by

the expression

P, =2r R, 0f(8,). (20)
When the bubble attains the breakaway diameter
the two forces acting on the bubble become equal, i.e.,

P,=P,=P, for R, =R,

Thus, the condition for breakaway of the bubble
from the heating surface can be written in the form
of the equation
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For simplification the function F(R¢/Rp) can be ap-
proximated (to within 5%) by the relationship
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If the cell is taken as approximately circular the
mean radius of the cell (over the heating surface) will .
be

(22)
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In determining the dynamic pressure of the liquid
we ignored the effect of the contact angle ®j and took
its value ag 90°. To take into account the contact angle
we will assume in a first approximation that its effect
is similar to the effect of ®; on the breakaway of the
bubble due to static pressure (see formula (1)).

In this case, by solving Eq. (21) using (10), (22),
and (23) for Ry, we obtain

R, (23)
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Formula (24) gives the relationship between the
breakaway diameter of the bubble and the physical
properties of the heat-carrier, the temperature differ-
ence, and the number of vapor-forming centers.

Expressions M and N characterize the static and
dynamic components, respectively, of the liquid pres-
sure on the vapor bubble.

When the number of vapor-forming centers is small
(M > 1), N— 1 and formula (24) becomes (1). In this
case the main effect on the bubble is due to the dy-
namic pressure (I is a function of n).

Thus, formula (24) is a more general expression
(in comparison with (1)) for calculation of the bubble
breakaway diameter and can be extended to the region
of higher saturation pressures.

To determine the number of vapor-forming centers
in the calculation of Dy (when more accurate data are
lacking) we can use the formula given in [5]:

i)

where [ is a coefficient with the dimension of length,
1=625-10"% m,
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NOTATION

R and ® are spherical coordinates; R; is the radius
of vapor bubble growing on heating surface; Ry is the
bubble radius at breakaway; Rp is the dimension of
cell (radius of round cell); @y is the angle of contact
with heating surface; T is the time; ¢ is the velocity
potential; vR, v@ are the projections of velocities on
coordinate axes in spherical gystem of coordinates;

v is the rate of growth of vapor bubble on heating sur-
face; vy is the rate of growth of bubble at moment of
breakaway from heating surface; pg and pq are the
static and dynamic components, respectively, of liquid
pressure on bubble surface; Psg, and pd, are the com-
ponents of liquid pressure at base of vapor bubble (® =
= @y); pg and pgo are the static vapor pressure inside
bubble; At is the wall-liquid temperature difference;

n is the number of vapor-forming centers on surface;
p" is the vapor density; p is the liquid density; " is
the specific gravity of vapor; r is the latent heat of
evaporation; o is the surface tension; A is the thermal
conductivity of liquid; Dy is the bubble diameter at
breakaway.
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